3.1. CAŁKOWE SFORMUŁOWANIE ZADANIA STATYKI PŁYTY SPOCZYWAJĄCEJ NA PODPORACH SŁUPOWYCH

Formułując równanie pracy wirtualnej z wykorzystaniem wielkości brzegowych można uwzględnić występowanie podpór słupowych w obszarze płyty. Zakładając, że uwzględnia się liczbę *m*-podpór, *j* =1 ...*m*. (Rys. 26), należy dodać do równań (2.3) oraz (2.4) człon związany z pracą rzeczywistej reakcji R_j na wirtualnym (podstawowym) przemieszczeniu w_j^* . Pojawia się *j*-liczba nowych niewiadomych w postaci reakcji w kolumnach ale jednocześnie dochodzi *j*-liczba całkowych równań brzegowych, zapisanych względem punktów kolokacji zlokalizowanych wewnątrz obszaru płyty.

Rys.26. Wielkości występujące w brzegowych równaniach całkowych

Całkowe równania brzegowe będą miały postać:

$$c(\mathbf{x}) \cdot w(\mathbf{x}) + \int_{\Gamma} \left[T_{n}^{*}(\mathbf{y}, \mathbf{x}) \cdot w(\mathbf{y}) - M_{n}^{*}(\mathbf{y}, \mathbf{x}) \cdot \varphi_{n}(\mathbf{y}) - M_{ns}^{*}(\mathbf{y}, \mathbf{x}) \cdot \varphi_{s}(\mathbf{y}) \right] \cdot d\Gamma(\mathbf{y}) =$$

$$= \int_{\Gamma} \left[T_{n}(\mathbf{y}) \cdot w^{*}(\mathbf{y}, \mathbf{x}) - M_{n}(\mathbf{y}) \cdot \varphi_{n}^{*}(\mathbf{y}, \mathbf{x}) - M_{ns}(\mathbf{y}) \cdot \varphi_{s}^{*}(\mathbf{y}, \mathbf{x}) \right] \cdot d\Gamma(\mathbf{y}) - \sum_{j=1}^{m} R_{j} \cdot w^{*}(j, \mathbf{x}) + (3.1)$$

$$+ \int_{\Omega} p(\mathbf{y}) \cdot w^{*}(\mathbf{y}, \mathbf{x}) \cdot d\Omega(\mathbf{y})$$

$$c(\mathbf{x}) \cdot \varphi_{n}(\mathbf{x}) + \int_{\Gamma} \left[\overline{T}_{n}^{*}(\mathbf{y}, \mathbf{x}) \cdot w(\mathbf{y}) - \overline{M}_{n}^{*}(\mathbf{y}, \mathbf{x}) \cdot \varphi_{n}(\mathbf{y}) - \overline{M}_{ns}^{*}(\mathbf{y}, \mathbf{x}) \cdot \varphi_{s}(\mathbf{y}) \right] \cdot d\Gamma(\mathbf{y}) =$$

$$= \int_{\Gamma} \left[T_{n}(\mathbf{y}, \mathbf{x}) \cdot \overline{w}^{*}(\mathbf{y}, \mathbf{x}) - M_{n}(\mathbf{y}) \cdot \overline{\varphi}_{n}^{*}(\mathbf{y}, \mathbf{x}) - M_{ns}(\mathbf{y}) \cdot \overline{\varphi}_{s}^{*}(\mathbf{y}, \mathbf{x}) \right] \cdot d\Gamma(\mathbf{y}) - \sum_{j=1}^{m} R_{j} \cdot \overline{w}^{*}(j, \mathbf{x}) + (3.2)$$

$$+ \int_{\Omega} p(\mathbf{y}) \cdot \overline{w}^{*}(\mathbf{y}, \mathbf{x}) \cdot d\Omega(\mathbf{y})$$

$$= \left\{ \overline{T}_{n}^{*}(\mathbf{y}, \mathbf{x}), \overline{M}_{n}^{*}(\mathbf{y}, \mathbf{x}), \overline{M}_{ns}^{*}(\mathbf{y}, \mathbf{x}), \overline{\varphi}_{n}^{*}(\mathbf{y}, \mathbf{x}), \overline{\varphi}_{s}^{*}(\mathbf{y}, \mathbf{x}) \right\} =$$

$$= \frac{\partial}{\Gamma} \left\{ T_{n}^{*}(\mathbf{y}, \mathbf{x}), \overline{M}_{n}^{*}(\mathbf{y}, \mathbf{x}), \overline{M}_{ns}^{*}(\mathbf{y}, \mathbf{x}), \overline{W}^{*}(\mathbf{y}, \mathbf{x}), \overline{\varphi}_{s}^{*}(\mathbf{y}, \mathbf{x}) \right\} =$$

$$= \frac{\partial}{\Gamma} \left\{ T_{n}^{*}(\mathbf{y}, \mathbf{x}), \overline{M}_{n}^{*}(\mathbf{y}, \mathbf{x}), \overline{M}_{ns}^{*}(\mathbf{y}, \mathbf{x}), W^{*}(\mathbf{y}, \mathbf{x}), \overline{\varphi}_{s}^{*}(\mathbf{y}, \mathbf{x}), \overline{\varphi}_{s}^{*}(\mathbf{y}, \mathbf{x}) \right\}$$

$$\{T_n(\mathbf{y}, \mathbf{x}), M_n(\mathbf{y}, \mathbf{x}), M_{ns}(\mathbf{y}, \mathbf{x}), w_n(\mathbf{y}, \mathbf{x}), \varphi_n(\mathbf{y}, \mathbf{x}), \varphi_s(\mathbf{y}, \mathbf{x})\} = \frac{\partial}{\partial n(\mathbf{x})} \{T_n^*(\mathbf{y}, \mathbf{x}), M_n^*(\mathbf{y}, \mathbf{x}), M_{ns}^*(\mathbf{y}, \mathbf{x}), w^*(\mathbf{y}, \mathbf{x}), \varphi_n^*(\mathbf{y}, \mathbf{x}), \varphi_s^*(\mathbf{y}, \mathbf{x})\} \}$$

W równaniach (3.1) i (3.2) reakcja w podporze słupowej wyrażona została w postaci siły skupionej. Ma to tę niedogodność, że wartości drugich pochodnych funkcji podstawowej $w_j^*(x_1, x_2)$ dążą do nieskończoności. Aby to wyeliminować, można zastąpić reakcję w postaci siły skupionej R_j , reakcją rozłożoną po powierzchni stempla q_{rj} . Można zatem wprowadzić powierzchniowe elementy brzegowe typu "constans" o jednym punkcie kolokacji (Rys. 28a i Rys. 28b) lub, jeśli podpora ma znaczne wymiary w odniesieniu do wymiarów płyty, kilka powierzchniowych elementów brzegowych (Rys. 28c) zgrupowanych na powierzchni słupa. Obliczając elementy macierzy charakterystycznej, należy wówczas dokonać całkowania odpowiednich funkcji podstawowych po powierzchni słupa. W przypadku słupa o dowolnym kształcie (Rys. 28a) można posłużyć się wyprowadzonymi wcześniej wzorami, które stosowano przy budowie elementów wektora prawej strony [1]. Jeśli stosuje się podpory o kształcie prostokątnym można wykonać całkowanie odpowiednich funkcji podstawowych w kartezjańskim układzie współrzędnych, co daje zamkniętą formułę całki, wyrażoną przez współrzędne wierzchołków prostokąta x_{rj}, y_{rj} .

Rys.28b

Rys.28c

3.2. BUDOWA UKŁADU RÓWNAŃ ALGEBRAICZNYCH

Układ równań algebraicznych rozbuduje się o dodatkowe człony związane z nowymi niewiadomymi (reakcjami w podporach słupowych). Ma on postać (Rys. 29 i Rys. 30):

$$\begin{bmatrix} \mathbf{G}_{\mathbf{X}} & \mathbf{G}_{1} & \mathbf{E}_{1} \\ \mathbf{\Delta} & -\mathbf{I} & \mathbf{0} \\ \mathbf{G}_{2} & \mathbf{G}_{3} & \mathbf{E}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \boldsymbol{\varphi}_{s} \\ \mathbf{q}_{r} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{1} \\ \mathbf{0} \\ \mathbf{F}_{2} \end{bmatrix}$$
(3.3)

Rys. 29. Obliczanie elementów macierzy charakterystycznej

Rys. 30. Obliczanie elementów wektora prawej strony

3.3. OBLICZANIE UGIĘCIA PŁYTY

Rozwiązanie układu równań pozwoliło określić odpowiednie wielkości brzegowe oraz wielkości reakcji w podporach słupowych. Bazując na tym samym całkowym równaniu brzegowym (3.1) można obliczyć ugięcie w dowolnym punkcie obszaru płyty (punkt kolokacji znajduje się teraz wewnątrz obszaru płyty), podobnie jak to miało miejsce w podrozdziale **2.4.** Do obliczania wartości ugięcia można wykorzystać wyprowadzone wcześniej odpowiednie całki brzegowe, całki po powierzchni obciążenia Ω oraz całki po krzywej dla obciążenia rozłożonego liniowo. Wzór opisujący ugięcie ulegnie nieznacznej modyfikacji o człon związany z reakcjami w podporach słupowych:

$$w = w(\overline{\mathbf{X}}) + w(\mathbf{q}_r) + w(q)$$
(3.4a)

Bezpośrednio z równania pracy wirtualnej otrzymuje się:

$$w(\mathbf{x}) = -\int_{\Gamma} \left[T_n^*(\mathbf{y}, \mathbf{x}) \cdot w(\mathbf{y}) - M_n^*(\mathbf{y}, \mathbf{x}) \cdot \varphi_n(\mathbf{y}) - M_{ns}^*(\mathbf{y}, \mathbf{x}) \cdot \varphi_s(\mathbf{y}) \right] \cdot d\Gamma(\mathbf{y}) +$$

+
$$\int_{\Gamma} \left[T_n(\mathbf{y}) \cdot w^*(\mathbf{y}, \mathbf{x}) - M_n(\mathbf{y}) \cdot \varphi_n^*(\mathbf{y}, \mathbf{x}) - M_{ns}(\mathbf{y}) \cdot \varphi_s^*(\mathbf{y}, \mathbf{x}) \right] \cdot d\Gamma(\mathbf{y}) +$$
(3.4b)
-
$$\int_{\Omega_r} q_{rj}(\mathbf{y}) \cdot w^*(\mathbf{y}, \mathbf{x}) \cdot d\Omega(\mathbf{y}) + \int_{\Omega} p(\mathbf{y}) \cdot w^*(\mathbf{y}, \mathbf{x}) \cdot d\Omega(\mathbf{y})$$

a po dyskretyzacji na elementy brzegowe przyjmuje formę:

$$w(x_{1}, x_{2}) = -\sum_{k=1}^{le} w_{k} \cdot \int_{\Gamma_{k}} T_{n}^{*} \cdot d\Gamma_{k} + \sum_{k=1}^{le} \varphi_{n} \cdot \int_{\Gamma_{k}} M_{n}^{*} \cdot d\Gamma_{k} + \sum_{k=1}^{le} \varphi_{s} \cdot \int_{\Gamma_{k}} M_{ns}^{*} \cdot d\Gamma_{k} + \sum_{k=1}^{le} T_{n} \cdot \int_{\Gamma_{k}} w^{*} \cdot d\Gamma_{k} - \sum_{k=1}^{le} M_{n} \cdot \int_{\Gamma} \varphi_{n}^{*} \cdot d\Gamma_{k} - \sum_{j=1}^{m} q_{rj} \cdot \int_{\Omega_{r}} w^{*}(i, \mathbf{x}) \cdot d\Omega_{r} + \sum_{l=1}^{le} p \cdot \int_{\Omega_{l}} w^{*} \cdot d\Omega$$

$$(3.4c)$$

gdzie *le* jest liczbę elementów brzegowych, *m* jest liczbą podpór słupowych i *Lp* jest liczbą obciążeń ciągłych rozłożonych na powierzchni płyty.

3.4. OBLICZANIE KĄTA OBROTU W PŁYCIE

Do obliczenia kąta obrotu wykorzystuje się wyprowadzone wcześniej całkowe równanie brzegowe (3.1). Równanie to należy zróżniczkować jednokrotnie po odpowiedniej współrzędnej x_i . Punkt kolokacji jest położony wewnątrz obszaru płyty, $c(\mathbf{x}) = 1$, analogicznie jak w podrozdziale **2.5**. W każdym punkcie płyty oblicza się dwie wartości kąta obrotu względem globalnego układu współrzędnych O, x_1, x_2 . Do obliczania wartości kątów obrotu można wykorzystać wyprowadzone wcześniej odpowiednie całki brzegowe, całki po powierzchni obciążenia Ω oraz całki po krzywej dla obciążenia rozłożonego liniowo. Wzór opisujący kąt obrotu zostanie zmodyfikowany o człon związany z reakcjami w słupach:

$$\varphi_{x_j} = \varphi_{x_j}\left(\overline{\mathbf{X}}\right) + \varphi_{x_j}(q_r) + \varphi_{x_j}(p) \qquad j = 1, 2$$
(3.4a)

Bezpośrednio z równania pracy wirtualnej otrzymuje się:

$$\varphi_{x_{j}}(\mathbf{x}) = -\int_{\Gamma} \left[\frac{\partial T_{n}^{*}}{\partial x_{i}}(\mathbf{y}, \mathbf{x}) \cdot w(y) - \frac{\partial M_{n}^{*}}{\partial x_{i}}(\mathbf{y}, \mathbf{x}) \cdot \varphi_{n}(\mathbf{y}) - \frac{\partial M_{ns}^{*}}{\partial x_{i}}(\mathbf{y}, \mathbf{x}) \cdot \varphi_{s}(\mathbf{y}) \right] \cdot d\Gamma(\mathbf{y}) + \\ + \int_{\Gamma} \left[T_{n}(\mathbf{y}) \cdot \frac{\partial w^{*}}{\partial x_{i}}(\mathbf{y}, \mathbf{x}) - M_{n}(\mathbf{y}) \cdot \frac{\partial \varphi_{n}^{*}}{\partial x_{i}}(\mathbf{y}, \mathbf{x}) - M_{ns}(\mathbf{y}) \cdot \frac{\partial \varphi_{s}^{*}}{\partial x_{i}}(\mathbf{y}, \mathbf{x}) \right] \cdot d\Gamma(\mathbf{y}) +$$
(3.4b)
$$- \int_{\Omega_{r}} q_{ri}(\mathbf{y}) \cdot \frac{\partial w^{*}}{\partial x_{i}}(\mathbf{y}, \mathbf{x}) \cdot d\Omega(\mathbf{y}) + \int_{\Omega} p(\mathbf{y}) \cdot \frac{\partial w^{*}}{\partial x_{i}}(\mathbf{y}, \mathbf{x}) \cdot d\Omega(\mathbf{y})$$

a po dyskretyzacji na elementy brzegowe przyjmuje formę:

$$\varphi_{x_{j}}(x_{1}, x_{2}) = -\sum_{k=1}^{le} w_{k} \cdot \int_{\Gamma_{k}} \frac{\partial T_{n}^{*}}{\partial x_{i}} \cdot d\Gamma_{k} + \sum_{k=1}^{le} \varphi_{n} \cdot \int_{\Gamma_{k}} \frac{\partial M_{n}^{*}}{\partial x_{i}} \cdot d\Gamma_{k} + \sum_{k=1}^{le} \varphi_{s} \cdot \int_{\Gamma_{k}} \frac{\partial M_{ns}^{*}}{\partial x_{i}} \cdot d\Gamma_{k} + \sum_{k=1}^{le} T_{n} \cdot \int_{\Gamma_{k}} \frac{\partial w^{*}}{\partial x_{i}} \cdot d\Gamma_{k} - \sum_{k=1}^{le} M_{n} \cdot \int_{\Gamma} \frac{\partial \varphi_{n}^{*}}{\partial x_{i}} \cdot d\Gamma_{k} - \sum_{j=1}^{m} q_{rj} \cdot \int_{\Omega_{r}} \frac{\partial w^{*}(i, \mathbf{x})}{\partial x_{i}} \cdot d\Omega_{r} + \sum_{l=1}^{Lp} p \cdot \int_{\Omega_{l}} \frac{\partial w^{*}}{\partial x_{i}} \cdot d\Omega$$
(3.4c)

gdzie *le* jest liczbę elementów brzegowych, *m* jest liczbą podpór słupowych i *Lp* jest liczbą obciążeń ciągłych rozłożonych na powierzchni płyty.

3.5. OBLICZANIE MOMENTÓW ZGINAJĄCYCH I MOMENTU SKRĘCAJĄCEGO W PŁYCIE

Obliczanie momentu zginający w dowolnym punkcie płyty wykonuje się analogicznie jak w podrozdziale **2.6.**, różniczkując odpowiednie funkcje podstawowe występujące w brzegowym równaniu całkowym (3.1). Oblicza się drugie pochodne tych funkcji po współrzędnych x_1 i x_2 :

$$\frac{\partial^2}{\partial x_1^2} \Big\{ T_n^*(x_1, x_2), M_n^*(x_1, x_2), M_{ns}^*(x_1, x_2), w^*(x_1, x_2), \varphi_n^*(x_1, x_2), \varphi_s^*(x_1, x_2) \Big\}, \\ \frac{\partial^2}{\partial x_2^2} \Big\{ T_n^*(x_1, x_2), M_n^*(x_1, x_2), M_{ns}^*(x_1, x_2), w^*(x_1, x_2), \varphi_n^*(x_1, x_2), \varphi_s^*(x_1, x_2) \Big\}, \\ \frac{\partial^2}{\partial x_1 \partial x_2} \Big\{ T_n^*(x_1, x_2), M_n^*(x_1, x_2), M_{ns}^*(x_1, x_2), w^*(x_1, x_2), \varphi_n^*(x_1, x_2), \varphi_s^*(x_1, x_2) \Big\}.$$

Wówczas momenty zginające można przedstawić w znanej formie:

$$M_{x_{1}}(x_{1}, x_{2}) = -D\left(\frac{\partial^{2} w(x_{1}, x_{2})}{\partial x_{1}^{2}} + v_{p} \frac{\partial^{2} w(x_{1}, x_{2})}{\partial x_{2}^{2}}\right)$$
(3.5)

$$M_{x_{2}}(x_{1}, x_{2}) = -D\left(\frac{\partial^{2}w(x_{1}, x_{2})}{\partial x_{2}^{2}} + v_{p}\frac{\partial^{2}w(x_{1}, x_{2})}{\partial x_{1}^{2}}\right)$$
(3.6)

$$M_{x_{1}x_{2}}(x_{1}, x_{2}) = -D(1 - v_{p})\frac{\partial^{2}w(x_{1}, x_{2})}{\partial x_{1}\partial x_{2}}$$
(3.7)

gdzie $w(x_1, x_2)$ jest funkcją ugięcia płyty w punkcie o współrzędnych x_1, x_2 .

Moment zginający można podzielić na człon związany z wielkościami brzegowymi, człon związany z reakcją w podporach słupowych i człon związany z obciążeniem:

$$M_{x_j} = M_{x_j}(\overline{\mathbf{X}}) + M_{x_j}(\mathbf{q}_r) + M_{x_j}(p) \qquad j = 1, 2$$
 (3.8)

a moment skręcający:

$$M_{x_1 x_2} = M_{x_1 x_2} \left(\overline{\mathbf{X}} \right) + M_{x_1 x_2} \left(\mathbf{q}_r \right) + M_{x_1 x_2} \left(p \right)$$
(3.9)

3.6. PRZYKŁADY OBLICZEŃ

W podrozdziałach **3.6.1.** i **3.6.2.** rozważane jest zadanie płyty prostokątnej, spoczywającej na wewnętrznych podporach słupowych mającej wszystkie krawędzie swobodne i obciążonej równomiernie. Wyniki obliczeń przedstawione są w wielkościach bezwymiarowych. Do ich weryfikacji wykorzystano pracę [61].

W podrozdziale **3.6.3.** rozważane jest zadanie płyty mostowej ukośnej podpartej swobodnie na dwóch przeciwległych krawędziach z dwoma wewnętrznymi podporami słupowymi i obciążonej równomiernie. Wyniki obliczeń przedstawione są w wielkościach bezwymiarowych i porównane z rozwiązaniami uzyskanymi metodą elementów skończonych. W celu uproszczenia oznaczeń przyjęto: $x_1 = x$ i $x_2 = y$. W przykładach stosuje się jeden punkt kolokacji w obrębie słupa.

Rys. 31. Płyta prostokątna, spoczywająca na sześciu podporach słupowych

Rys. 32a. Płyta prostokątna, spoczywająca na sześciu podporach słupowych, mająca wszystkie krawędzie swobodne. Postać ugięcia. 120 elementów brzegowych

Tabela 3.1a. Płyta prostokątna spoczywająca na sześciu podporach słupowych, mająca wszystkie krawędzie swobodne, obciążona równomiernie na całej powierzchni. Wyniki obliczeń. 120 elementów brzegowych

	$w \cdot D/(pl^4) \cdot 10^{-3}$									
y/h	x/l	0.5	0.6	0.7	0.8	0.9	1.0			
0.0	MEB-praca	-0.1480	-0.0813	-0.0232	-0.0529	-0.1630	-0.2162			
0.0	[61]	-0.1510	-0.0910	-0.0240	-0.0530	-0.1490	-0.2260			
0.1	MEB-praca	-0.0626	0.0009	0.0708	0.0385	-0.0614	-0.0129			
0.1	[61]	-0.0660	0.0010	0.0670	0.0350	-0.0630	-0.1320			
1/6	MEB-praca	0.0000	0.0701	0.1322	0.0997	0.000	-0.0629			
1/0	[61]	0.0000	0.0670	0.1290	0.0970	0.000	-0.0640			

Tabela 3.1a. c.d. Płyta prostokątna spoczywająca na sześciu podporach słupowych, mająca wszystkie krawędzie swobodne, obciążona równomiernie na całej powierzchni. Wyniki obliczeń. 120 elementów brzegowych

	$w \cdot D/(pl^4) \cdot 10^{-3}$									
y/h	x/l	0.5	0.6	0.7	0.8	0.9	1.0			
0.2	MEB-praca	0.0383	0.1040	0.1627	0.1309	0.0349	-0.0278			
0.2	[61]	0.0350	0.1010	0.1600	0.1290	0.0330	-0.0290			
0.3	MEB-praca	0.1603	0.2031	0.2473	0.2198	0.1413	0.0806			
0.5	[61]	0.1570	0.2000	0.2450	0.2180	0.1400	0.0760			
0.4	MEB-praca	0.2490	0.2766	0.3081	0.2845	0.2183	0.1603			
0.4	[61]	0.2450	0.2730	0.3060	0.2830	0.2160	0.1550			
0.5	MEB-praca	0.2807	0.3036	0.3303	0.3081	0.2461	0.1871			
0.5	[61]	0.2770	0.3000	0.3280	0.3060	0.2440	0.1840			

Rys. 32b. Płyta prostokątna, spoczywająca na sześciu podporach słupowych, mająca wszystkie krawędzie swobodne. Postać momentu zginającego M_x . 120 elementów brzegowych

Tabela 3.1b. Płyta prostokątna spoczywająca na sześciu podporach słupowych, mająca wszystkie krawędzie swobodne, obciążona równomiernie na całej powierzchni. Wyniki obliczeń. 120 elementów brzegowych

	$M_x/(pl^2)\cdot 10^{-3}$									
y/h	x/l	0.5	0.6	0.7	0.8	0.9	1.0			
0.0	MEB-praca	-15.8540	0.0905	11.1368	7.6164	-3.5321	0.0000			
0.0	[61]	-14.9980	0.0560	10.6690	7.3360	-3.3880	0.0000			
0.1	MEB-praca	-20.4515	1.1814	10.6252	7.6510	-6.7900	0.0000			
0.1	[61]	-20.3830	1.2480	10.6120	7.6860	-6.7590	0.0000			
1/6	MEB-praca	-25.9701	2.0171	10.4020	7.8558	-10.3365	0.0000			
1/0	[61]	-26.0220	2.0940	10.4730	7.9460	-10.3060	0.0000			
0.2	MEB-praca	-23.0925	2.0916	10.1714	7.7334	-8.8375	0.0000			
0.2	[61]	-23.1340	2.1550	10.2490	7.8290	-8.7380	0.0000			

Tabela 3.1b. c.d. Płyta prostokątna spoczywająca na sześciu podporach słupowych, mająca wszystkie krawędzie swobodne, obciążona równomiernie na całej powierzchni. Wyniki obliczeń. 120 elementów brzegowych

	$M_x/(pl^2)\cdot 10^{-3}$									
y/h	x/l	0.5	0.6	0.7	0.8	0.9	1.0			
0.2	MEB-praca	-9.7866	1.7321	9.0824	6.9659	-1.5462	0.0000			
0.5	[61]	-9.7900	1.7650	9.1570	7.0720	-1.3820	0.0000			
0.4	MEB-praca	-4.1733	1.9321	8.0382	6.6106	1.2386	0.0000			
0.4	[61]	-4.1670	1.9620	8.1170	6.7350	1.4510	0.0000			
0.5	MEB-praca	-2.5894	2.1366	7.6416	6.5457	1.9710	0.0000			
0.5	[61]	-2.5800	2.1660	7.7210	6.6770	2.2020	0.0000			

Rys. 32c. Płyta prostokątna, spoczywająca na sześciu podporach słupowych, mająca wszystkie krawędzie swobodne. Postać momentu zginającego M_y . 120 elementów brzegowych

Tabela 3.1c. Płyta prostokątna spoczywająca na sześciu podporach słupowych, mająca wszystkie krawędzie swobodne, obciążona równomiernie na całej powierzchni. Wyniki obliczeń. 120 elementów brzegowych

	$M_y/(pl^2)\cdot 10^{-3}$										
y/h	x/l	0.5	0.6	0.7	0.8	0.9	1.0				
0.1	MEB-praca	-5.6336	-1.9536	1.3210	0.0000	-3.0627	-2.4994				
0.1	[61]	-5.7130	-1.6830	1.2510	0.0920	-2.7950	-2.5830				
1/6	MEB-praca	-17.4695	-1.6791	2.5000	0.5828	-9.3396	-2.6879				
1/0	[61]	-17.3980	-1.4150	2.7930	0.9940	-9.1410	-2.3560				
0.2	MEB-praca	-12.3984	0.1000	3.5286	1.9552	-5.9476	-1.1432				
0.2	[61]	-12.2340	0.0740	3.9300	2.2970	-5.6100	-0.7530				
0.2	MEB-praca	8.2222	7.3550	7.9847	7.8061	8.1756	7.5489				
0.3	[61]	8.4780	7.6460	8.3270	8.1530	8.4800	7.5340				
0.4	MEB-praca	15.0119	13.2482	11.9808	12,4736	13.8112	14.4011				
0.4	[61]	15.3060	13.5570	12.3060	12.8010	14.1000	14.1130				
0.5	MEB-praca	16.9674	15.2280	13.5332	14.1020	15.5856	16.7052				
0.5	[61]	17.2710	15.5420	13.8550	14.4240	15.9670	16.3360				

3.6.2. Płyta prostokątna, mająca wszystkie krawędzie swobodne, spoczywająca na dziewięciu podporach słupowych, obciążona równomiernie na całej powierzchni

Rys. 33. Płyta prostokątna, spoczywająca na dziewięciu podporach słupowych

Rys. 34a. Płyta prostokątna, spoczywająca na dziewięciu podporach słupowych, mająca wszystkie krawędzie swobodne. Postać ugięcia. 120 elementów brzegowych

Tabela 3.2a. Płyta prostokątna spoczywająca na dziewięciu podporach słupowych, mająca wszystkie krawędzie swobodne, obciążona równomiernie na całej powierzchni. Wyniki obliczeń. 120 elementów brzegowych

	$w \cdot D/(pl^4) \cdot 10^{-3}$									
y/h	x/l	0.5	0.6	0.7	0.8	0.9	1.0			
0.0	MEB-praca	-0.0204	0.0385	0.1040	0.0785	-0.0149	-0.8507			
0.0	[61]	-0.0210	0.0370	0.1000	0.0750	-0.0150	-0.0890			
0.1	MEB-praca	0.0000	0.0576	0.1145	0.0889	0.0000	-0.0714			
0.1	[61]	0.0000	0.0560	0.1120	0.0870	0.0000	-0.0710			
0.2	MEB-praca	0.0331	0.0770	0.1259	0.1020	0.2153	-0.0524			
0.2	[61]	0.0300	0.0740	0.1240	0.1000	0.0200	-0.0540			

Tabela 3.2a. c.d. Płyta prostokątna spoczywająca na dziewięciu podporach słupowych, mająca wszystkie krawędzie swobodne, obciążona równomiernie na całej powierzchni. Wyniki obliczeń. 120 elementów brzegowych

	$w \cdot D/(pl^4) \cdot 10^{-3}$								
y/h	x/l	0.5	0.6	0.7	0.8	0.9	1.0		
0.2	MEB-praca	0.0445	0.0843	0.1312	0.1073	0.0287	-0.0464		
0.3	[61]	0.0410	0.0810	0.1290	0.1050	0.0270	-0.0490		
0.4	MEB-praca	0.0241	0.0757	0.1294	0.1022	0.0152	-0.0577		
0.4	[61]	0.0200	0.0720	0.1270	0.1000	0.0140	-0.0600		
0.5	MEB-praca	0.0000	0.0678	0.1273	0.0973	0.0000	-0.0669		
0.5	[61]	0.0000	0.0640	0.1240	0.0950	0.0000	-0.0690		

Rys. 34b. Płyta prostokątna, spoczywająca na dziewięciu podporach słupowych, mająca wszystkie krawędzie swobodne. Postać momentu zginającego M_x . 120 elementów brzegowych

Tabela 3.2b. Płyta prostokątna spoczywająca na dziewięciu podporach słupowych, mająca wszystkie krawędzie swobodne, obciążona równomiernie na całej powierzchni. Wyniki obliczeń. 120 elementów brzegowych

	$M_x/(pl^2) \cdot 10^{-3}$									
y/h	x/l	0.5	0.6	0.7	0.8	0.9	1.0			
0.0	MEB-praca	-15.5399	4.9428	9.6398	7.3013	-3.6767	0.0000			
0.0	[61]	-15.2900	5.4970	9.6030	7.2920	-3.4540	0.0000			
0.1	MEB-praca	-19.0611	1.0289	9.0259	7.1911	-5.8568	0.0000			
0.1	[61]	-19.7210	1.1510	9.0220	7.2330	-5.7340	0.0000			
0.2	MEB-praca	-10.6659	0.5336	8.3770	6.6511	-1.2792	0.0000			
0.2	[61]	-10.5560	0.5590	8.4280	6.7280	-1.1530	0.0000			
0.2	MEB-praca	-8.6770	0.2179	8.2617	6.4306	-0.1000	0.0000			
0.3	[61]	-8.6480	0.2380	8.3230	6.5150	-0.0930	0.0000			

Tabela 3.2b. c.d. Płyta prostokątna spoczywająca na dziewięciu podporach słupowych, mająca wszystkie krawędzie swobodne, obciążona równomiernie na całej powierzchni. Wyniki obliczeń. 120 elementów brzegowych

	$M_x/(pl^2)\cdot 10^{-3}$									
y/h	x/l	0.5	0.6	0.7	0.8	0.9	1.0			
0.4	MEB-praca	-13.7962	0.6845	8.9546	6.8413	-3.0058	0.0000			
0.4	[61]	-13.8100	0.7080	9.0200	6.9260	-2.9240	0.0000			
0.5	MEB-praca	-26.0605	1.6480	9.4838	7.5016	-10.0421	0.0000			
0.5	[61]	-26.1250	1.7100	9.5530	7.5850	-9.9890	0.0000			

Rys. 34c. Płyta prostokątna, spoczywająca na dziewięciu podporach słupowych, mająca wszystkie krawędzie swobodne. Postać momentu zginającego M_{y} . 120 elementów brzegowych

Tabela 3.3c. Płyta prostokątna spoczywająca na dziewięciu podporach słupowych, mająca wszystkie krawędzie swobodne, obciążona równomiernie na całej powierzchni. Wyniki obliczeń. 120 elementów brzegowych

			$M_y/($	pl^2) · 10 ⁻³			
y/h	x/l	0.5	0.6	0.7	0.8	0.9	1.0
0.0	MEB-praca	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0	[61]	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1	MEB-praca	-0.9000	-0.1537	1.5129	0.8452	-4.3970	-0.2431
0.1	[61]	-1.08930	-0.1650	1.6490	0.8690	-4.3260	-0.2040
0.2	MEB-praca	4.0152	2.9617	2.8800	2.9778	3.6115	2.9480
0.2	[61]	4.1510	3.0390	3.0470	3.1450	3.7110	3.0870
0.2	MEB-praca	6.0092	3.9353	3.0696	3.6422	4.8647	3.9616
0.3	[61]	6.0970	4.0320	3.1870	3.7660	4.9720	4.0800
0.4	MEB-praca	0.1200	0.1203	1.5356	1.1245	0.7900	-0.3135
0.4	[61]	0.1320	0.1170	1.6300	1.2270	0.8840	-0.2670
0.5	MEB-praca	20.6125	-4.0324	0.4948	-1.4305	-11.8238	-4.8720
0.5	[61]	-20.6020	-3.9740	0.5090	-1.3430	-11.7250	-4.6940

3.6.3. Płyta mostowa skośna, podparta swobodnie na dwóch przeciwległych krawędziach z dwoma wewnętrznymi podporami słupowymi, obciążona równomiernie na całej powierzchni

Rys. 35. Płyta mostowa skośna, podparta swobodnie na dwóch przeciwległych krawędziach, z dwoma wewnętrznymi podporami słupowymi. $\varphi = 45^{\circ}$

Rys. 36a. Postać ugięcia dla płyty mostowej skośnej, podpartej swobodnie na dwóch przeciwległych krawędziach, z dwoma wewnętrznymi podporami słupowymi. $\varphi = 45^{\circ}$. 120 elementów brzegowych

Rys. 36b. Postać ugięcia płyty mostowej skośnej, podpartej swobodnie na dwóch przeciwległych krawędziach z dwoma wewnętrznymi podporami słupowymi, $\varphi = 45^{\circ}$. 120 elementów brzegowych

W celu weryfikacji wyników przeprowadzono dodatkowe obliczenia przy zastosowaniu metody elementów skończonych (Rys. 36). Obliczenia wykonano przy użyciu programu PL-WIN. Zastosowano trójkątne elementy płytowe trójwęzłowe o trzech stopniach swobody w węźle.

Rys. 37. Siatka elementów skończonych

Tabela 2.3. Płyta mostowa skośna, podparta swobodnie na dwóch przeciwległych krawędziach z dwoma wewnętrznymi podporami słupowymi, $\varphi = 45^{\circ}$,120 elementów brzegowych

Pu	nkt	2B	3B	4B	5B	6B	7B	8B
wD/nl^4	praca	0.071900	0.080068	0.104319	0.147415	0.203309	0.259128	0.303256
$\cdot 10^{-3}$	MES	0.066964	0.080357	0.107143	0.147321	0.200893	0.261161	0.308036
M_x/pl^2	praca	0.596620	0.561430	0.763740	1.036817	1.194649	1.171415	0.979355
$.10^{-2}$	MES	0.560000	0.580000	0.777500	1.037500	1.195000	1.182500	0.997500
M_v/pl^2	praca	0.197657	0.242053	0.080490	-0.074164	-0.897367	-0.011147	0.056336
·10 ⁻²	MES	0.222500	0.257500	0.087500	-0.072500	-0.875000	-0.050000	0.042500
M_{xy}/pl^2	praca	-0.436875	-0.454340	-0.513221	-0.486919	-0.391721	-0.285718	-0.161527
·10 ⁻²	MES	-0.415000	-0.435000	-0.502500	-0.472500	-0.382500	-0.292500	-0.192500
Pu	nkt	2C	3C	4C	5C	6C	7C	8C
wD/pl ⁴	praca	0.064513	0.079066	0.096598	0.137252	0.221753	0.337209	0.456086
·10 ⁻³	MES	0.062946	0.080357	0.093750	0.133928	0.220982	0.334821	0.455357
M_x/pl^2	praca	0.339416	0.423242	0.332351	0.574798	1.069358	1.396251	1.515417
·10 ⁻²	MES	0.330000	0.425000	0.352500	0.565000	1.080000	1.392500	1.507500
M_v/pl^2	praca	0.030000	0.280143	0.364995	0.101123	-0.088889	0.082881	0.066793
·10 ⁻²	MES	0.047500	0.312500	0.377500	0.087500	-0.072500	0.075000	0.097500
M_{xy}/pl^2	praca	-0.228386	-0.252528	-0.491541	-0.751099	-0.690936	-0.522238	-0.385330
·10 ⁻²	MES	-0.245000	-0.260000	-0.480000	-0.735000	-0.680000	-0.515000	-0.392500
Pu	nkt	2D	3D	4D	5D	6D	7D	8d
Put wD/pl^4	nkt praca	2D 0.018073	3D 0.020801	4D 0.042581	5D 0.049073	6D 0.082488	7D 0.203869	8d 0.379141
Put wD/pl^4 $\cdot 10^{-3}$	nkt praca MES	2D 0.018073 0.020759	3D 0.020801 0.021428	4D 0.042581 0.042857	5D 0.049073 0.049554	6D 0.082488 0.080357	7D 0.203869 0.207589	8d 0.379141 0.381696
Put wD/pl^4 $\cdot 10^{-3}$ M_x/pl^2	nkt praca MES praca	2D 0.018073 0.020759 -1.169950	3D 0.020801 0.021428 -0.140306	4D 0.042581 0.042857 -0.032148	5D 0.049073 0.049554 -0.488544	6D 0.082488 0.080357 -0.430840	7D 0.203869 0.207589 0.538069	8d 0.379141 0.381696 1.119296
Put wD/pl^4 $\cdot 10^{-3}$ M_x/pl^2 $\cdot 10^{-2}$	nkt praca MES praca MES	2D 0.018073 0.020759 -1.169950 -1.187500	3D 0.020801 0.021428 -0.140306 -0.137500	4D 0.042581 0.042857 -0.032148 -0.010000	5D 0.049073 0.049554 -0.488544 -0.435000	6D 0.082488 0.080357 -0.430840 -0.452500	7D 0.203869 0.207589 0.538069 0.542500	8d 0.379141 0.381696 1.119296 1.110000
Put wD/pl^4 $\cdot 10^{-3}$ M_x/pl^2 $\cdot 10^{-2}$ M_y/pl^2	nkt praca MES praca MES praca	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141	7D 0.203869 0.207589 0.538069 0.542500 -0.529602	8d 0.379141 0.381696 1.119296 1.110000 -0.115835
$\begin{array}{c} \text{Put} \\ wD/pl^{4} \\ \cdot 10^{-3} \\ M_{x}/pl^{2} \\ \cdot 10^{-2} \\ M_{y}/pl^{2} \\ \cdot 10^{-2} \end{array}$	nkt praca MES praca MES praca MES	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.570000	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141 -0.515000	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000	8d 0.379141 0.381696 1.119296 1.110000 -0.115835 -0.080000
$\begin{array}{c} {\rm Put} \\ wD/pl^4 \\ \cdot 10^{-3} \\ \hline M_x/pl^2 \\ \cdot 10^{-2} \\ \hline M_y/pl^2 \\ \cdot 10^{-2} \\ \hline M_{xy}/pl^2 \end{array}$	nkt praca MES praca MES praca MES praca	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.570000 -0.453044	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500 0.044450	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000 0.186016	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000 -0.138902	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141 -0.515000 -0.781085	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000 -0.549045	8d 0.379141 0.381696 1.119296 1.110000 -0.115835 -0.080000 -0.459108
$\begin{array}{c} \text{Put} \\ wD/pl^4 \\ \cdot 10^{-3} \\ M_x/pl^2 \\ \cdot 10^{-2} \\ M_y/pl^2 \\ \cdot 10^{-2} \\ M_{xy}/pl^2 \\ \cdot 10^{-2} \end{array}$	nkt praca MES praca MES praca MES praca MES	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.570000 -0.453044 -0.450000	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500 0.044450 0.032500	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000 0.186016 0.152500	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000 -0.138902 -0.132500	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141 -0.515000 -0.781085 -0.770000	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000 -0.549045 -0.530000	8d 0.379141 0.381696 1.119296 1.110000 -0.115835 -0.080000 -0.459108 -0.437500
Put wD/pl^4 $\cdot 10^{-3}$ M_x/pl^2 $\cdot 10^{-2}$ M_y/pl^2 $\cdot 10^{-2}$ M_{xy}/pl^2 $\cdot 10^{-2}$ Put	nkt praca MES praca MES praca MES praca MES	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.570000 -0.453044 -0.450000 2E	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500 0.044450 0.032500 3E	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000 0.186016 0.152500 4E	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000 -0.138902 -0.132500 5E	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141 -0.515000 -0.781085 -0.770000	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000 -0.549045 -0.530000	8d 0.379141 0.381696 1.119296 1.110000 -0.115835 -0.080000 -0.459108 -0.437500 8E
Put wD/pl^4 $\cdot 10^{-3}$ M_x/pl^2 $\cdot 10^{-2}$ M_y/pl^2 $\cdot 10^{-2}$ M_{xy}/pl^2 $\cdot 10^{-2}$ M_{xy}/pl^2 $\cdot 10^{-2}$ Put wD/pl^4	nkt praca MES praca MES praca MES praca MES nkt	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.570000 -0.453044 -0.450000 2E 0.139523	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500 0.044450 0.032500 3E 0.000000	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000 0.186016 0.152500 4E 0.001228	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000 -0.138902 -0.132500 5E 0.018212	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141 -0.515000 -0.781085 -0.770000 6E 0.001228	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000 -0.549045 -0.530000 7E 0.000000	8d 0.379141 0.381696 1.119296 1.110000 -0.115835 -0.080000 -0.459108 -0.437500 8E 0.139523
$\begin{array}{c} \text{Put} \\ \hline wD/pl^4 \\ \cdot 10^{-3} \\ \hline M_x/pl^2 \\ \cdot 10^{-2} \\ \hline M_{y}/pl^2 \\ \cdot 10^{-2} \\ \hline M_{xy}/pl^2 \\ \cdot 10^{-2} \\ \hline \text{Put} \\ wD/pl^4 \\ \cdot 10^{-3} \end{array}$	nkt praca MES praca MES praca MES nkt praca MES	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.570000 -0.453044 -0.450000 2E 0.139523 0.147321	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500 0.044450 0.032500 3E 0.000000 0.000000	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000 0.186016 0.152500 4E 0.001228 0.002879	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000 -0.138902 -0.132500 5E 0.018212 0.018080	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141 -0.515000 -0.781085 -0.770000 6E 0.001228 0.002879	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000 -0.549045 -0.530000 7E 0.000000	8d 0.379141 0.381696 1.119296 1.110000 -0.115835 -0.080000 -0.459108 -0.437500 8E 0.139523 0.147321
$\begin{array}{c} \text{Put} \\ wD/pl^4 \\ \cdot 10^{-3} \\ M_x/pl^2 \\ \cdot 10^{-2} \\ M_y/pl^2 \\ \cdot 10^{-2} \\ M_{xy}/pl^2 \\ \cdot 10^{-2} \\ \hline \\ wD/pl^4 \\ \cdot 10^{-3} \\ M_x/pl^2 \end{array}$	nkt praca MES praca MES praca MES praca MES nkt praca MES	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.570000 -0.453044 -0.450000 2E 0.139523 0.147321 -0.855014	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500 0.044450 0.032500 3E 0.000000 0.000000 -3.070710	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000 0.186016 0.152500 4E 0.001228 0.002879 -0.827240	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000 -0.138902 -0.132500 5E 0.018212 0.018080 -0.292331	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141 -0.515000 -0.781085 -0.770000 6E 0.001228 0.002879 -0.827240	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000 -0.549045 -0.530000 7E 0.000000 0.000000 -3.070710	8d 0.379141 0.381696 1.119296 1.110000 -0.115835 -0.080000 -0.459108 -0.437500 8E 0.139523 0.147321 -0.855014
$\begin{array}{c} \text{Put} \\ wD/pl^4 \\ \cdot 10^{-3} \\ \hline M_x/pl^2 \\ \cdot 10^{-2} \\ \hline M_y/pl^2 \\ \cdot 10^{-2} \\ \hline M_{xy}/pl^2 \\ \cdot 10^{-2} \\ \hline \text{Put} \\ wD/pl^4 \\ \cdot 10^{-3} \\ \hline M_x/pl^2 \\ \cdot 10^{-2} \\ \end{array}$	nkt praca MES praca MES praca MES mkt praca MES praca MES	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.570000 -0.453044 -0.450000 2E 0.139523 0.147321 -0.855014 -0.832500	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500 0.044450 0.032500 3E 0.000000 0.000000 -3.070710 -2.785000	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000 0.186016 0.152500 0.152500 0.001228 0.001228 0.002879 -0.827240	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000 -0.138902 -0.132500 5E 0.018212 0.018080 -0.292331 -0.285000	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141 -0.515000 -0.781085 -0.770000 6E 0.001228 0.001228 0.002879 -0.827240	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000 -0.549045 -0.530000 0.000000 0.000000 0.000000 -3.070710	8d 0.379141 0.381696 1.119296 1.110000 -0.115835 -0.080000 -0.459108 -0.437500 8E 0.139523 0.147321 -0.855014 -0.832500
$\begin{array}{c} \text{Put} \\ wD/pl^4 \\ \cdot 10^{-3} \\ \hline M_x/pl^2 \\ \cdot 10^{-2} \\ \hline M_y/pl^2 \\ \cdot 10^{-2} \\ \hline M_{xy}/pl^2 \\ \cdot 10^{-2} \\ \hline \text{Put} \\ wD/pl^4 \\ \cdot 10^{-3} \\ \hline M_x/pl^2 \\ \cdot 10^{-2} \\ \hline M_y/pl^2 \end{array}$	nkt praca MES praca MES praca MES nkt praca MES praca MES praca	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.453044 -0.453044 -0.450000 2E 0.139523 0.147321 -0.855014 -0.832500 -0.491457	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500 0.044450 0.032500 3E 0.000000 0.000000 -3.070710 -2.785000 -2.589235	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000 0.186016 0.152500 0.152500 4E 0.001228 0.002879 -0.827240 -0.875000	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000 -0.138902 -0.132500 5E 0.018212 0.018080 -0.292331 -0.285000	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141 -0.515000 -0.781085 -0.770000 6E 0.001228 0.001228 0.002879 -0.827240 -0.875000	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000 -0.549045 -0.530000 7E 0.000000 0.000000 -3.070710 -2.785000	8d 0.379141 0.381696 1.119296 1.110000 -0.115835 -0.080000 -0.459108 -0.437500 8E 0.139523 0.147321 -0.855014 -0.832500 -0.491457
$\begin{array}{c} {\rm Put} \\ {\rm w}D/pl^4 \\ \cdot 10^{-3} \\ {\rm M}_x/pl^2 \\ \cdot 10^{-2} \\ {\rm M}_y/pl^2 \\ \cdot 10^{-2} \\ {\rm M}_{xy}/pl^2 \\ \cdot 10^{-2} \\ {\rm Put} \\ {\rm w}D/pl^4 \\ \cdot 10^{-3} \\ {\rm M}_x/pl^2 \\ \cdot 10^{-2} \\ {\rm M}_y/pl^2 \\ \cdot 10^{-2} \end{array}$	nkt praca MES praca MES praca MES praca MES praca MES praca MES	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.570000 -0.453044 -0.450000 2E 0.139523 0.147321 -0.855014 -0.832500 -0.491457 -0.550000	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500 0.044450 0.032500 3E 0.000000 0.000000 -3.070710 -2.785000 -2.589235 -2.390000	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000 0.186016 0.152500 4E 0.001228 0.001228 0.002879 -0.827240 -0.827240 -0.875000	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000 -0.138902 -0.132500 5E 0.018212 0.018080 -0.292331 -0.285000 0.040000	6D 0.082488 0.080357 -0.430840 -0.452500 -0.481141 -0.515000 -0.781085 -0.770000 6E 0.001228 0.001228 0.002879 -0.827240 -0.827240 -0.875000	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000 -0.549045 -0.530000 7E 0.000000 0.000000 -3.070710 -2.785000 -2.589235 -2.390000	8d 0.379141 0.381696 1.119296 1.110000 -0.115835 -0.080000 -0.459108 -0.437500 8E 0.139523 0.147321 -0.855014 -0.832500 -0.491457 -0.550000
$\begin{array}{c} \text{Put} \\ \hline wD/pl^4 \\ \cdot 10^{-3} \\ \hline M_x/pl^2 \\ \cdot 10^{-2} \\ \hline M_{y}/pl^2 \\ \cdot 10^{-2} \\ \hline M_{xy}/pl^2 \\ \cdot 10^{-2} \\ \hline WD/pl^4 \\ \cdot 10^{-3} \\ \hline M_x/pl^2 \\ \cdot 10^{-2} \\ \hline M_y/pl^2 \\ \cdot 10^{-2} \\ \hline M_{xy}/pl^2 \\ \cdot 10^{-2} \\ \hline \end{array}$	nkt praca MES praca MES praca MES nkt praca MES praca MES praca MES praca	2D 0.018073 0.020759 -1.169950 -1.187500 -0.440221 -0.570000 -0.453044 -0.450000 2E 0.139523 0.147321 -0.855014 -0.832500 -0.491457 -0.550000 -0.089683	3D 0.020801 0.021428 -0.140306 -0.137500 -0.381841 -0.327500 0.044450 0.032500 3E 0.000000 0.000000 -3.070710 -2.785000 -2.589235 -2.390000 -0.211688	4D 0.042581 0.042857 -0.032148 -0.010000 0.159955 0.150000 0.186016 0.152500 0.152500 4E 0.001228 0.002879 -0.827240 -0.827240 -0.875000 -0.442658 -0.472500	5D 0.049073 0.049554 -0.488544 -0.435000 0.222221 0.225000 -0.138902 -0.132500 -0.132500 5E 0.018212 0.018080 -0.292331 -0.285000 0.040200 0.040000	6D 0.082488 0.080357 -0.430840 -0.430840 -0.452500 -0.452500 -0.4514141 -0.515000 -0.781085 -0.770000 6E 0.001228 0.002879 -0.827240 -0.875000 -0.442658 -0.450935	7D 0.203869 0.207589 0.538069 0.542500 -0.529602 -0.510000 -0.549045 -0.530000 7E 0.000000 0.000000 -3.070710 -2.785000 -2.589235 -2.390000	8d 0.379141 0.381696 1.119296 1.119000 -0.115835 -0.080000 -0.459108 -0.437500 8E 0.139523 0.147321 -0.855014 -0.832500 -0.491457 -0.089683